Глеб Евгеньевич Лозино-Лозинский

(25.12.1909 (7.01.1910), Киев — 28 ноября 2001, Москва)




Доктор технических наук, Герой Социалистического Труда, лауреат Ленинской (1962г.) и Государственных (1950, 1952г.г.) премий, Генеральный конструктор ОАО НПО "Молния", патриарх отечественной авиационно-космической техники.

Ракетно-космическая техника относится к тем направлениям человеческой деятельности, в которых значимость достижений и побед очевидна не только потомкам, а понятна и близка современникам. В значительной мере нашими свершениями в авиации и космонавтике мы обязаны Глебу Евгеньевичу, его неутомимой энергии, инженерному таланту и конструкторскому гению.

Родившись в далеком 1909 году, Г.Е.Лозино-Лозинский в полной мере впитал в себя все те качества, которые мы вкладываем в истинный смысл понятия "техническая интеллигенция", став воплощением лучших традиций русской конструкторской школы.

Свой творческий путь Г.Е.Лозино-Лозинский начал на Харьковском турбогенераторном заводе, где он начал работать инженером-расчетчиком после окончания в 1930 г. Харьковского механико-машиностроительного института. Первой серьезной работой стало участие в проработке проекта первой отечественной паровой конденсационной турбины большой мощности.

С 1932 г. Г.Е.Лозино-Лозинский работает в авиационной промышленности, разрабатывая в Харьковском авиационном институте паротурбинную двигательную установку для тяжелого бомбардировщика А.Н.Туполева.

Главной проблемой, с которой столкнулись конструкторы в 40-х годах при увеличении скоростей полета, стала неэффективность воздушного винта как основного движителя самолета. Дальнейший прирост максимальных скоростей достигался непропорциональным увеличением мощности поршневого двигателя и прогрессирующими весовыми издержками. Это был тупик, из которого конструкторы лихорадочно искали выход: испытывались комбинированные двигательные установки, пороховые ускорители, появились первые самолеты с ЖРД. Предлагаемые технические решения позволяли получить кратковременный выигрыш в скорости за счет существенного снижения эффективности. Это был передний край инженерных изысканий, и именно здесь впервые проявился инженерный талант Г.Е.Лозино-Лозинского.

Вообще, в качестве отступления, анализируя инженерную деятельность Г.Е.Лозино-Лозинского, ловишь себя на мысли, что у него нет рядовых работ, вся его конструкторская деятельность связана с разработкой именно принципиально новых, уникальных конструкций, определяющих этапность в развитии авиационной и космической техники. Перейдя в 1941 г. на работу в ОКБ А.И.Микояна, Г.Е.Лозино-Лозинский занялся разработкой проектов различных вариантов реактивных газотурбинных двигателей. Энергетика самолетов стала основным его интересом на долгие годы. Под руководством и при непосредственном участии Г.Е.Лозино-Лозинского проходило освоение силовых установок нового типа, в том числе комбинированных (ПД+ВРД). Первая отечественная форсажная камера (и методы ее расчета) была разработана именно для поршневого (!) двигателя (форсажная камера располагалась в системе охлаждения радиатора с помощью вентиляторов), существенно улучшив его скоростные характеристики: в 1947 г. в горизонтальном полете на опытном поршневом самолете была достигнута скорость 850 км/ч. Серьезные проблемы были решены при создании и отработке систем регулирования форсажной камеры. Таким образом, к моменту появления первых пригодных для установки на самолет ТРД у нас уже была отработанная форсажная камера! Опережающая разработка позволила начать штурм звукового барьера сразу же с освоением ТРД. Затраченные усилия не прошли даром: на серийном истребителе МиГ-15 впервые в СССР 18 октября 1949 г. летчиком Д.М.Тютеревым была достигнута скорость звука в пологом пикировании (всего построено 15560 самолетов 19 модификаций), а на МиГ-17 в феврале 1950 г. - уже и в горизонтальном полете (М=1,03). МиГ-17 был оснащен первой в нашей стране серийной форсажной камерой, разработанной под руководством Г.Е.Лозино-Лозинского в сотрудничестве с ЦИАМ, увеличивавшей тягу двигателя на 30%. Эта форсажная камера имела регулируемое критическое сечение и была первой камерой такого типа в мире. Продолжительность работы форсажной камеры ограничивалась 3 мин на высотах до 7000 м и 10 мин на больших высотах. Общее число построенных истребителей МиГ-17 в 14 модификациях превысило 11000 машин.

После достижения рекордных показателей на первое место вышла задача создания высокоэффективного серийного истребителя. Г.Е.Лозино-Лозинский возглавил в ОКБ А.И.Микояна работы по комплексному сопряжению двигателя с воздухозаборником и форсажной камерой с целью повышения эффективности всей силовой установки. Результатом стал МиГ-19 - первый в мире серийный сверхзвуковой истребитель. Его заменил лучший истребитель своего времени МиГ-21 с максимальной скоростью 2М, оснащенный лобовым регулируемым сверхзвуковым воздухозаборником. Самолет имел систему высотного коррелятора приемистости, служившую для поддержания оптимальных характеристик разгона двигателя на больших высотах. Система управления воздухозаборником вводила коррекции выдвижного конуса по углам отклонения стабилизатора в зависимости от углов атаки. На счету модификации МиГ-21 - Е-66 два абсолютных мировых рекорда скорости горизонтального полета в 1959-60 г.г. и абсолютный мировой рекорд высоты в 1961 г. Всего было разработано более 45 (!) модификаций самолета МиГ-21, общее количество выпущенных машин (без учета производимых до настоящего времени в КНР) превысило 10352 штук.



В конечном итоге именно мощная и отлаженная силовая установка явилась одним из основных факторов, обеспечивших подавляющее превосходство микояновским истребителям (МиГ-15, 17, 19, 21) над самолетами потенциальных противников, что наглядно продемонстрировали послевоенные локальные конфликты: среднее соотношение потерь во Вьетнаме в период с 1966 по 1970 гг. между советскими и американскими истребителями составило 3,1:1 в пользу МиГ-21. За участие в разработке 3-х "махового" истребителя-перехватчика МиГ-25 Г.Е.Лозино-Лозинский был удостоен почетного звания Героя Социалистического Труда.

С дальнейшим ростом скоростей и высоты полетов авиация вышла на порог космоса. В начале 60-х годов в США строится и начинает первые полеты экспериментальный ракетоплан Х-15 (в ходе испытательных полетов достигнуты скорость М=6,72 и максимальная высота 107906 м). В соответствии с пятилетним Тематическим планом ВВС по орбитальным и гиперзвуковым самолетам практические работы по крылатой космонавтике в нашей стране в 1965 г. были поручены ОКБ-155 А.И.Микояна, где их возглавил 55-летний Главный конструктор ОКБ Г.Е.Лозино-Лозинский. Тема по созданию двухступенчатой воздушно-космической системы (ВКС) получила индекс "Спираль".

Справедливости ради необходимо отметить, что опытные разработки по крылатым космическим кораблям велись практически во всех серьезных авиационных и космических КБ страны (ОКБ С.П.Королева, ОКБ-23 В.М.Мясищева, ОКБ-52 В.Н.Челомея, ОКБ А.Н.Туполева), но все они предусматривали традиционный ракетный старт и не продвинулись дальше эскизной проработки.

В соответствиями с требованиями заказчика конструкторам поручалась разработка ВКС, состоящей из гиперзвукового самолета-разгонщика (ГСР) и орбитального самолета (ОС) с ракетным ускорителем. Старт системы - горизонтальный, с использованием разгонной тележки. После набора скорости и высоты с помощью двигателей ГСР происходило отделение ОС и набор скорости с помощью ракетных двигателей двухступенчатого ускорителя. Боевой пилотируемый одноместный ОС многоразового применения предусматривал использование в вариантах разведчика, перехватчика или ударного самолета с ракетой класса "Орбита-Земля" и мог применяться для инспекции космических объектов. Диапазон опорных орбит составлял 130-150 км высоты и 45º-135º наклонения, задача полета должна была выполняться в течении 2-3 витков. Маневренные возможности ОС с использованием бортовой ракетной двигательной установки должны обеспечивать изменение наклонения орбиты на 17º (ударный самолет с ракетой на борту - 7º ) или изменение наклона орбиты на 12º с подъемом на высоту до 1000 км. После выполнения орбитального полета ОС должен входить в атмосферу с большим углом атаки (45º-65º ), управление предусматривалось изменением крена при постоянном угле атаки. На траектории планирующего спуска в атмосфере задавалась способность совершения аэродинамического маневра по дальности 4000...6000 км с боковым отклонением +/- 1100...1500 км. В район посадки ОС выводится с выбором вектора скорости вдоль оси взлетно-посадочной полосы, что достигается выбором программы изменения крена, и совершает посадку с применением турбореактивного двигателя на грунтовой аэродром II класса со скоростью посадки 250 км/ч.

Согласно утвержденному Г.Е.Лозино-Лозинским 29 июня 1966 года аванпроекту "Спирали", ВКС с расчетной массой 115 тонн представляла собой состыкованные воедино крылатые широкофюзеляжные многоразовые аппараты горизонтального взлета-посадки, спроектированные по схеме "несущий корпус-бесхвостка": 52-тонный (длина 38 м, размах 16,5 м) гиперзвуковой самолет-разгонщик (индекс "50-50") до скорости 6М и отделяемый от него, стартующий с его "спины" на высоте 28-30 км 10-тонный пилотируемый ОС длиной 8 м и размахом крыла 7,4 м; на консоли крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа. К ОС стыковался блок выведения, состоящий из топливного бака, в котором размещались основные компоненты кислород-керосин, и двух одноразовых ЖРД с тягой каждого около 100 тонн (Генерального конструктора В.П.Глушко). Блок выведения после вывода ОС в намеченную точку отделялся и падал в мировой океан. Диапазон высот рабочих орбит изменялся от минимальных, порядка 150-200 км, до максимальных 500-600 км; направление азимута запуска в связи с наличием ГСР определялось конкретным целевым назначением полета и в зависимости от точки старта могло варьироваться в пределах от 0º до 97º.

На ГСР в качестве топлива использовался сжиженный водород, двигательная установка - в виде ТРД (разработки А.М.Люлька). Особенностью этого двигателя являлось использование паров водорода для привода турбины, вращающей компрессор ТРД. Испаритель водорода находился на входе компрессора. Таким образом, была успешно решена проблема создания силовой установки без комбинирования ТВРД, ГПРД и ТРД. Вторым принципиальным новшеством ГСР являлся интегрированный гиперзвуковой воздухозаборник, использующий для сжатия практически всю переднюю часть нижней поверхности крыла. Дальность полета ГСР закладывалась до 3000 км, преодоление теплового барьера обеспечивалось соответствующим подбором конструкционных и теплозащитных материалов. В дальнейшей перспективе предусматривалась возможность создания на базе "6-махового" ГСР пассажирского самолета. Потенциал заложенных в проект идей оказался настолько велик, что и сегодня на их основе в НПО "Молния" ведется проработка гиперзвукового пассажирского самолета на сто мест с дальностью полета до 10000 км.



Масса выводимого на орбиту ИСЗ полезного груза составляла до 1300 кг (для Н=200 км, i=51º). В грузовом отсеке в зависимости от задач полета могла устанавливаться шлюзовая камера, для летчика предполагалось установить катапультное кресло с необходимым обеспечением его жизнедеятельности на всех этапах полета. Интегрированная система навигации и управления полетом существенно упрощала управление на всех этапах полета от разделения с ГСР до посадки. При проектировании конструкторы исходили из потребных 20-30 полетов системы в год.

ОС представлял собой летательный аппарат с несущим корпусом и крыльями, отклоняющимися вверх (с раздельным изменением угла поперечного V для каждой консоли крыла) для исключения прямого обтекания их тепловым потоком при прохождении участка плазмообразования, а также для управления по крену. Аэродинамические характеристики ОС обеспечивали боковую дальность при спуске с орбиты порядка 1500-1800 км (с работающим ТРД расчетная дальность бокового маневра на дозвуковой крейсерской скорости далеко превосходила 2000 км). Чтобы улучшить посадочные характеристики, на последнем, атмосферном участке спуска была предусмотрена перебалансировка аппарата на малые углы атаки с поворотом консолей из вертикального (килевого) положения фиксированное крыльевое. Аэродинамическое качество в дозвуковом полете с разложенными консолями крыла возрастало до 4 с соответственным увеличением дальности планирования.

ОС был оборудован двигательной установкой (ДУ), состоящей из двигателя орбитального маневрирования, с помощью которого изменялась высота орбитального полета, и необходимого количества ракетных двигателей системы управления. Запасов топлива для двигателей системы управления хватало на орбитальный полет продолжительностью до двух суток.

Так как ОС был рассчитан на планирующий спуск с орбиты в режиме самобалансировки на очень больших углах атаки - до 53º при гиперзвуковом качестве 0,8, то основная возникающая тепловая нагрузка воспринималась теплозащитным экраном (ТЗЭ) оригинальной конструкции, т.е. изначально закладывался принцип "горячей конструкции". Конструктивно ТЗЭ выполнялся из множества пластин жаропрочной стали ВНС (в дальнейшем предполагалось использование ниобиевых сплавов), расположенных по принципу "рыбной чешуи". Экран подвешивался на керамических подшипниках, выполнявших роль тепловых барьеров, а при колебаниях температуры нагрева автоматически изменял свою форму, сохраняя стабильность положения относительно корпуса. Таким образом на всех режимах обеспечивалось постоянство аэродинамической конфигурации ОС. Проведенные на специальном стенде тепло-прочностные испытания гиперзвукового аналога "105.13" показали, что максимальные температуры его нагрева не превышали +1500ºС, а остальные элементы конструкции, находясь в аэродинамической тени от ТЗЭ, нагревались значительно меньше. В процессе наземной экспериментально-стендовой отработки теплозащиты были достигнуты рабочие температуры до +1300ºС, однако несмотря на то, что полный цикл испытаний не был завершен, расчетный ресурс теплозащиты оценивался более 50 полетов.

В связи с большой сложностью программы "Спираль" в эскизном проекте предусматривалась поэтапная отработка всей системы:
  1. Создание пилотируемого самолета-аналога ОС с ракетным двигателем, стартующего с самолета-носителя Ту-95. Самолет-аналог не имеет массо-габаритного и приборного сходства с ОС. Цель испытаний - оценка основных аэродинамических и силовых параметров ОС в условиях, близких к космическому полету (максимальная высота полета 120 км, максимальная скорость полета соответствует М=6-8) и входу в атмосферу. Планировалось изготовить и испытать 3 самолета-аналога. По плану, полет на дозвуковой скорости и посадка - 1967 г., полет на сверхзвуке и гиперзвуке - 1968 г. Стоимость работ - 18 млн.рублей. Этот этап по сути являлся аналогом американского проекта Х-15 и не был реализован в металле.
  2. Создание одноместного экспериментального пилотируемого орбитального самолета (ЭПОС) для натурной отработки конструкции и летного подтверждения характеристик основных систем ОС. Запуск - с помощью ракеты-носителя 11А511 ("Союз") с выводом на орбиту высотой 150-160 км и наклонением 51º , где аппарат совершает 2-3 витка, а затем выполняет спуск и посадку, как полноразмерный ОС. Предусматривалось полное внешнее и системное сходство с боевым ОС. Планировалось изготовить и запустить 4 самолета в беспилотном (1969 г.) и пилотируемом (1970 г.) вариантах. Стоимость работ - 65 млн.рублей.
  3. Создание ГСР. Для ускорения работ планировалось создать и испытать сначала полноразмерный ГСР с двигателями, работающими на керосине (летные испытания 4 самолетов - в 1970 г., стоимость работ 140 млн.рублей). После накопления данных по аэродинамике и эксплуатации самолета на гиперзвуковой скорости планировался переход ГСР на водородное топливо, для чего необходимо было изготовить и испытать 4 самолета. Летные испытания ГСР на водороде - 1972 г., стоимость работ - 230 млн.рублей.
  4. Испытание полностью укомплектованной системы, состоящей из ГСР и ОС с ракетным ускорителем (все двигатели работают на керосине) - 1972 г. Так как возможности подобной системы ограничены; то по всей видимости, ОС данного варианта - беспилотный. После всесторонней отработки и проверки всех систем, в 1973 г. планировалось проведение летных испытаний полностью укомплектованной системы с двигателями, работающими на водороде, и пилотируемым ОС.




Реально программа НИОКР и испытаний "Спирали" реализована в меньших масштабах: для исследования характеристик устойчивости и управляемости на разных этапах полета и оценки теплозащиты из высокопрочных жаростойких материалов до закрытия работ были построены аналоги ОС в трех комплектациях (аналог для исследований в полетах на дозвуковой скорости - имитация атмосферного участка захода на посадку при возвращении с орбиты - получил кодовое обозначение "105.11", на сверхзвуке - "105.12", на гиперзвуке - "105.13") и в условиях космического полета испытаны масштабные летающие модели серии "БОР".

Аналог орбитального самолета "105.11" успешно прошел серию дозвуковых летных испытаний и полностью подтвердил заявленные характеристики. Вначале (1976г.) выполнялись "подлеты": после отрыва от земли (с помощью турбореактивного двигателя РД-36К конструкции П.А.Колесова) "105.11" сразу же по прямой шел на посадку. Таким образом его опробовали летчики-испытатели Игорь Волк, Валерий Меницкий и Александр Федотов. Последний 11 октября 1976 г. осуществил еще и короткий перелет с одной грунтовой полосы аэродрома на другую. Дальнейшие испытания предусматривали полеты "105.11" под фюзеляжем переоборудованного бомбардировщика Ту-95К. Успешные полеты позволили перейти к сбросу "105.11" с самолета-носителя, и в 1977-78 годах аналог совершил 6 испытательных полётов с планированием на ВПП после отцепки от Ту-95К на высоте около 5500 метров. Первый полет выполнил Авиард Фастовец 27 октября 1977 г., в дальнейшем к нему присоединились летчики-испытатели Петр Остапенко и Василий Урядов. В испытательных полетах были полностью проверены аэродинамические характеристики, устойчивость и управляемость, эффективность выбранных органов управления. После прекращения полетов дозвуковой аналог "105.11" передан в качестве экспоната в музей ВВС в подмосковном Монино, где каждый его может увидеть и сегодня.

Для подтверждения методик перерасчета результатов трубных испытаний масштабных моделей "105.12" и "105.13" на натурные условия, а также для выполнения комплексных испытаний различных типов теплозащиты (включая кварцевую) и подтверждения правильности тепловых расчетов, были проведены летные испытания моделей ОС в масштабах от 1:5 до 1:2 ("БОР-2, 3") и в масштабе 1:3 ("БОР-4"), которые также подтвердили соответствие результатов испытаний расчетным при одновременном воздействии реальных аэродинамических, тепловых, акустических и вибрационных нагрузок.

"БОР-4" представлял собой беспилотный экспериментальный аппарат длиной 3.4 м, размахом крыла 2.6 м и массой 1074 кг на орбите и 795 кг после возвращения. Он был оснащен комплексом измерительной аппаратуры, системой управления с использованием реактивных двигателей и отклоняемых аэродинамических поверхностей. В период с 1982-84 г.г. было произведено 6 запусков аппаратов "БОР-4" ракетами-носителями "Космос" с космодрома Капустин-Яр на различные траектории. Аппараты, выводившиеся на орбиты ИСЗ, получали наименования спутников серии "Космос".

В каждом запуске аппарат после орбитального полета совершал ориентированный и управляемый вход в атмосферу с управлением на этапе спуска газодинамическими органами, формировавшими выбранную траекторию. Тем самым при осуществлении стабилизации по курсу и тангажу проводились контролируемые повороты по крену в поточных осях для прогнозирования попадания на заданную дальность с непревышением расчетных тепловых потоков и перегрузок на всех этапах спуска.

Впоследствии, по отработанной на аппарате "БОР-4" методике с космодрома Капустин Яр в сторону полигона в Сары Шаган (Казахстан) было проведено 6 суборбитальных запусков (1983-88гг.) аппаратов "БОР-5", представлявших собой масштабную модель (М1:8) орбитального корабля "Буран" массой порядка 1.4 т, и использовавшихся для исследований аэродинамических характеристик и условий входа в атмосферу.

Полная драматизма история закрытия программы "Спираль", на которую было затрачено более 75 миллионов рублей (и которая практически по всем параметрам превосходила своего американского конкурента - ВКС "Dyna Soar") - тема для отдельного рассказа.